alexa Contrasting effects of fetal CA1 and CA3 hippocampal grafts on deficits in spatial learning and working memory induced by global cerebral ischaemia in rats.
Surgery

Surgery

Journal of Transplantation Technologies & Research

Author(s): Hodges H, Sowinski P, Fleming P, Kershaw TR, Sinden JD,

Abstract Share this page

Abstract Functional effects of fetal hippocampal field grafts were assessed in rats with spatial learning and memory impairments following global cerebral ischaemia. Experiment 1 examined effects of grafts dissected from fields CA1 and CA3 at embryonic day 19 and from the dentate gyrus at postnatal day 1. Cell suspensions (15,000 cells/site) were implanted bilaterally at two points above the dorsal CA1 area two weeks after four-vessel occlusion (electrocoagulation of the vertebral arteries followed the 24 h later by occlusion of the carotid arteries for 15 min). Histological examination showed that CA1 neuronal loss (60-70\%) was equivalent in all ischaemic groups and that 80\% of CA1 and 60\% of CA3 grafts survived and were sited appropriately in the alveus or corpus callosum above the area of ischaemic CA1 damage in the host, but there was no survival of dentate grafts. Results from rats with poor pyramidal cell graft survival were excluded, but those from rats with non-surviving dentate grafts were retained as an additional control group. Acquisition in the water maze was examined nine and 25 weeks after transplantation, and spatial working memory was assessed in three-door runway and water maze matching-to-position tasks 19 and 28 weeks after grafting, respectively. For water maze acquisition rats were trained with two trails/day and a 10 min inter-trial interval for 10-12 days to locate a submerged platform. Ischaemic rats with CA1 grafts learned the platform position as rapidly as non-ischaemic controls, searched appropriately in the training quadrant and were accurate in heading towards the platform, but were initially impaired on recall of the precise platform position on probe trials with the platform removed. Performance of ischaemic controls and groups with CA3 and non-surviving dentate graft groups was significantly impaired relative to controls and to the CA1 grafted group. The CA1 grafted group was also as successful as controls in matching-to-position in the water maze and substantially superior to the other ischaemic groups, assessed using three trials/day, with a 30-s inter-trial interval and a different platform position on each day. In a more complex matching-to-position task in the three-door runway, the performance of the CA1 grafted group was significantly impaired relative to controls, although superior to that of the other ischaemic control and graft groups. Functional recovery with CA1, but not CA3, grafts in ischaemic rats was replicated in a second experiment which assessed water maze acquisition and working memory at 10 and 14 weeks after transplantation, in rats with 90\% graft survival. These results indicate that long-lasting, task-dependent improvements can be seen in ischaemic rats with CA1 fetal grafts in both aversively and appetitively motivated spatial learning tasks. The findings suggest that functional recovery requires homotypic replacement of CA1 cells damaged by ischaemia, rather than provision of structurally similar glutamate-releasing CA3 pyramidal cells.
This article was published in Neuroscience and referenced in Journal of Transplantation Technologies & Research

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords