alexa Contribution of corticospinal tract damage to cortical motor reorganization after a single clinical attack of multiple sclerosis.
Molecular Biology

Molecular Biology

Journal of Cell Science & Therapy

Author(s): Pantano P, Mainero C, Iannetti GD, Caramia F, Di Legge S,

Abstract Share this page

Abstract The objectives of this study were to assess whether cortical motor reorganization in the early phase of multiple sclerosis (MS) is correlated with the clinical presentation and with specific damage to the corticospinal tract. Twenty patients with clinically isolated syndrome (CIS) and serial MR findings indicative of MS were selected. In 10 patients the CIS was hemiparesis (group H), and in 10 patients the CIS was optic neuritis (group ON). There were no significant differences in age, disease duration, total T2 lesion load (LL), and total T1 LL between group H and group ON. Ten age-matched healthy subjects served as controls (group C). All subjects were submitted to fMRI during a sequential finger-to-thumb opposition task of the right hand. Group H showed a significantly higher EDSS score and T1 LL calculated along the corticospinal tract than group ON. Three-group comparison by ANOVA showed significantly higher activation in group H than in the other two groups (P < 0.001). Significant foci were located in the sensory-motor cortex (BA 1-4), the parietal cortex (BA 40), the insula of the ipsilateral hemisphere, and the contralateral motor cortex (BA 4/6). Group ON showed, although at a lower level of significance (P < 0.01), higher activation of the contralateral motor-related areas than group C. Multiple regression analysis showed that T2 and T1 LL along the corticospinal tract and time since clinical onset positively correlated with activation in motor areas in both cerebral hemispheres (P < 0.005). Total T2 LL positively correlated with activation in motor areas in the contralateral hemisphere (P < 0.005). Total T1 LL and EDSS did not show any significant correlation. More severe specific damage to the motor pathway in patients with previous hemiparesis may explain the significantly higher involvement of ipsilateral motor areas observed in group H than in group ON. Furthermore, the significant correlation between the time since clinical onset and activation in motor areas suggests that cortical reorganization develops gradually in concomitance with the subclinical accumulation of tissue damage.
This article was published in Neuroimage and referenced in Journal of Cell Science & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords