alexa Control of hepatocyte DNA synthesis by intracellular pH and its role in the action of tumor promoters.
Molecular Biology

Molecular Biology

Journal of Cytology & Histology

Author(s): Lee CH, Cragoe EJ Jr, Edwards AM

Abstract Share this page

Abstract The mechanisms of tumor promotion in liver by various xenobiotics of diverse structure are not well understood. However, these tumor promoters share the ability to exert growth-stimulatory effects on hepatocytes. Our laboratory has been utilizing normal rat hepatocytes under defined conditions of primary cultures, to investigate growth-stimulatory actions of liver tumor promoters. We have shown that most, if not all, of the liver tumor promoters tested stimulate hepatocyte DNA synthesis when added in combination with epidermal growth factor (EGF), insulin, and glucocorticoids. In the present study, we sought evidence for the role of the Na(+)/H(+) antiporter and cytoplasmic alkalinization in the direct growth-stimulatory actions of tumor promoters on hepatocytes. Hepatocytes cultured under conditions (bicarbonate-buffered medium) where intracellular pH (pH(i)) was independent of extracellular pH (pH(e)), EGF- and insulin-stimulated rates of DNA synthesis were unaffected by modest changes in pH(e). However, under conditions (HEPES-buffered medium) where pH(i) varied in a linear fashion with pH(e), rates of EGF- and insulin-stimulated DNA synthesis were highly dependent on pH(e). Similarly, 12-O-tetradecanoylphorbol-13-acetate (TPA) and alpha-hexachlorocyclohexane (HCH)-stimulated DNA synthesis were pH(e)-dependent but were stimulatory over different pH(e) ranges, suggesting that these promoters may act by distinct mechanisms. Chemicals that are capable of inducing rapid cytoplasmic alkalinization, ammonium chloride (1 and 15 mM) and monensin (0.5 microM), were found to stimulate hepatocyte DNA synthesis. The role of the Na(+)/H(+) antiport in controlling pH(i) of hepatocytes was demonstrated by artificially acidifying 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein acetoxymethyl (BCECF)-loaded isolated hepatocytes with 20 mM sodium acetate and the use of specific inhibitors. Amiloride and its analogues inhibited pH(i) recovery from the acid load in a dose dependent manner and the relative potency of these inhibitors paralleled their K(i) values for the Na(+)/H(+) antiport. At concentrations that stimulate hepatocyte DNA synthesis, some liver tumor promoters phenobarbital (PB) and HCH, were found to cause a rapid rise pH(i) in isolated hepatocytes which was sensitive to amiloride and its analogues. Taken together, our data suggest that activation of Na(+)/H(+) antiport activity may be one mechanism whereby some liver tumor promoters stimulate hepatocytes DNA synthesis. This study has implications for the mechanisms of tumor promotion in liver carcinogenesis. Copyright 2003 Wiley-Liss, Inc. This article was published in J Cell Physiol and referenced in Journal of Cytology & Histology

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords