alexa Control of inducible chemoresistance: enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-kappaB.
Oncology

Oncology

Journal of Cancer Science & Therapy

Author(s): Wang CY, Cusack JC Jr, Liu R, Baldwin AS Jr

Abstract Share this page

Abstract Programmed cell death (apoptosis) seems to be the principal mechanism whereby anti-oncogenic therapies such as chemotherapy and radiation effect their responses. Resistance to apoptosis, therefore, is probably a principal mechanism whereby tumors are able to overcome these cancer therapies. The transcription factor NF-kappaB is activated by chemotherapy and by irradiation in some cancer cell lines. Furthermore, inhibition of NF-kappaB in vitro leads to enhanced apoptosis in response to a variety of different stimuli. We show here that inhibition of NF-kappaB through the adenoviral delivery of a modified form of IkappaBalpha, the inhibitor of NF-kappaB, sensitizes chemoresistant tumors to the apoptotic potential of TNFalpha and of the chemotherapeutic compound CPT-11, resulting in tumor regression. These results demonstrate that the activation of NF-kappaB in response to chemotherapy is a principal mechanism of inducible tumor chemoresistance, and establish the inhibition of NF-kappaB as a new approach to adjuvant therapy in cancer treatment. This article was published in Nat Med and referenced in Journal of Cancer Science & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords