alexa Control of Müller glial cell proliferation and activation following retinal injury.
Ophthalmology

Ophthalmology

Journal of Clinical & Experimental Ophthalmology

Author(s): Dyer MA, Cepko CL

Abstract Share this page

Abstract Müller glial cells are the major support cell for neurons in the vertebrate retina. Following neuronal damage, Müller cells undergo reactive gliosis, which is characterized by proliferation and changes in gene expression. We have found that downregulation of the tumor supressor protein p27Kip1 and re-entry into the cell cycle occurs within the first 24 hours after retinal injury. Shortly thereafter, Müller glial cells upregulate genes typical of gliosis and then downregulate cyclin D3, in concert with an exit from mitosis. Mice lacking p27Kip1 showed a constitutive form of reactive gliosis, which leads to retinal dysplasia and vascular abnormalities reminiscent of diabetic retinopathy. We conclude that p27Kip1 regulates Müller glial cell proliferation during reactive gliosis. This article was published in Nat Neurosci and referenced in Journal of Clinical & Experimental Ophthalmology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords