alexa Control of mucosal virus infection by influenza nucleoprotein-specific CD8+ cytotoxic T lymphocytes.


Journal of Clinical & Cellular Immunology

Author(s): Mbawuike IN, Zhang Y, Couch RB

Abstract Share this page

Abstract BACKGROUND: MHC class I-restricted CD8+ cytotoxic T lymphocytes (CTL) are thought to play a major role in clearing virus and promoting recovery from influenza infection and disease. This has been demonstrated for clearance of influenza virus from the lungs of infected mice. However, human influenza infection is primarily a respiratory mucosal infection involving the nasopharynx and tracheobronchial tree. The role of CD8+ CTL directed toward the influenza nucleoprotein (NP) in defense against influenza virus infection at the respiratory mucosa was evaluated in two separate adoptive transfer experiments. METHODS: Influenza nucleoprotein (NP)-specific CD8+ CTL were generated from splenocytes obtained from Balb/c mice previously primed with influenza A/Taiwan/1/86 (H1N1) infection or with influenza A/PR/8/34 (H1N1)-derived NP plasmid DNA vaccine followed by infection with A/Hong Kong/68 (H3N2) virus. After in vitro expansion by exposure to an influenza NP-vaccinia recombinant, highly purified CD8+ T cells exhibited significant lysis in vitro of P815 target cells infected with A/Hong Kong/68 (H3N2) virus while the CD8- fraction (CD4+ T cells, B cells and macrophages) had no CTL activity. Purified CD8+ and CD8- T cells (1 x 107) were injected intravenously or interperitoneally into naive mice four hours prior to intranasal challenge with A/HK/68 (H3N2) virus. RESULTS: The adoptively transferred NP-vaccinia-induced CD8+ T cells caused significant reduction of virus titers in both the lungs and nasal passages when compared to CD8- cells. Neither CD8+ nor CD8- T cells from cultures stimulated with HIV gp120-vaccinia recombinant reduced virus titers. CONCLUSION: The present data demonstrate that influenza NP-specific CD8+ CTL can play a direct role in clearance of influenza virus from the upper respiratory mucosal surfaces.
This article was published in Respir Res and referenced in Journal of Clinical & Cellular Immunology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version