alexa Control of programmed cell death by the baculovirus genes p35 and iap.


Journal of Clinical & Experimental Pathology

Author(s): Clem RJ, Miller LK

Abstract Share this page

Abstract The SF-21 insect cell line undergoes rapid and widespread apoptosis when treated with actinomycin D or when infected with a mutant of the baculovirus Autographa californica nuclear polyhedrosis virus lacking a p35 gene or a functionally active iap (inhibitor of apoptosis) gene. Here we provide evidence that the basis for the induction of apoptosis by these two different stimuli is the cessation of RNA synthesis. We also show that expression of either p35 or two different functional iap homologs blocks apoptosis independently of other viral genes, indicating that these gene products act directly on the cellular apoptotic pathway. The iap genes encode a C3HC4 (or RING) finger motif found in a number of transcriptional regulatory proteins, as well as two additional Cys/His motifs (baculovirus iap repeats). We show that specific amino acids within both the C3HC4 finger and the N-terminal baculovirus iap repeat are critical for anti-apoptosis function. Overexpression of either mammalian bcl-2 or adenovirus E1B-19K, genes which block apoptosis when overexpressed in a number of mammalian cells, does not block actinomycin D-induced apoptosis in SF-21 cells.
This article was published in Mol Cell Biol and referenced in Journal of Clinical & Experimental Pathology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version