alexa Control of the temperature rise in magnetic hyperthermia with use of an external static magnetic field.
Engineering

Engineering

Bioceramics Development and Applications

Author(s): Murase K, Takata H, Takeuchi Y, Saito S

Abstract Share this page

Abstract Our purpose in this study was to investigate the usefulness of a method for controlling the temperature rise in magnetic hyperthermia (MH) using an external static magnetic field (SMF), and to derive an empirical equation for describing the energy dissipation of magnetic nanoparticles (MNPs) in the presence of both the alternating magnetic field (AMF) and SMF through phantom experiments. We made a device that allows for MH in the presence of an SMF with a field-free point (FFP) using a Maxwell coil pair. We measured the temperature rise of MNPs under various conditions of AMF and SMF and various distances from the FFP (d), and calculated the specific absorption rate (SAR) from the initial slope of the temperature curve. The SAR values decreased with increasing strength of SMF (Hs) and d. The extent of their decrease with d increased with an increase of the gradient of SMF (Gs). The relationships between SAR and Hs and between SAR and d could be well approximated by Rosensweig's equation in which the amplitude of AMF (Hac) is replaced by √[Hac(2)]/√[Hac(2)+Hs(2)], except for the case when Gs was small. In conclusion, the use of an external SMF with an FFP will be effective for controlling the temperature rise in MH in order to reduce the risk of heating surrounding healthy tissues, and our empirical equation will be useful for estimating SAR in the presence of both the AMF and SMF and for designing an effective local heating system for MH. Copyright © 2012 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved. This article was published in Phys Med and referenced in Bioceramics Development and Applications

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version