alexa Controllability analysis of protein glycosylation in CHO cells.
Chemical Engineering

Chemical Engineering

Journal of Bioprocessing & Biotechniques

Author(s): St Amand MM, Tran K, Radhakrishnan D, Robinson AS, Ogunnaike BA

Abstract Share this page

Abstract To function as intended in vivo, a majority of biopharmaceuticals require specific glycan distributions. However, achieving a precise glycan distribution during manufacturing can be challenging because glycosylation is a non-template driven cellular process, with the potential for significant uncontrolled variability in glycan distributions. As important as the glycan distribution is to the end-use performance of biopharmaceuticals, to date, no strategy exists for controlling glycosylation on-line. However, before expending the significant amount of effort and expense required to develop and implement on-line control strategies to address the problem of glycosylation heterogeneity, it is imperative to assess first the extent to which the very complex process of glycosylation is controllable, thereby establishing what is theoretically achievable prior to any experimental attempts. In this work, we present a novel methodology for assessing the output controllability of glycosylation, a prototypical example of an extremely high-dimensional and very non-linear system. We first discuss a method for obtaining the process gain matrix for glycosylation that involves performing model simulations and data analysis systematically and judiciously according to a statistical design of experiments (DOE) scheme and then employing Analysis of Variance (ANOVA) to determine the elements of process gain matrix from the resulting simulation data. We then discuss how to use the resulting high-dimensional gain matrix to assess controllability. The utility of this method is demonstrated with a practical example where we assess the controllability of various classes of glycans and of specific glycoforms that are typically found in recombinant biologics produced with Chinese Hamster Ovary (CHO) cells. In addition to providing useful insight into the extent to which on-line glycosylation control is achievable in actual manufacturing processes, the results also have important implications for genetically engineering cell lines design for enhanced glycosylation controllability.
This article was published in PLoS One and referenced in Journal of Bioprocessing & Biotechniques

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • International Conference on Nanobiotechnology
    July 10-11, 2017 CHICAGO, USA
  • Global Biotechnology Congress 2017
    July 10th - 13th, 2017, Boston, MA, USA
  • 17th Euro Biotechnology Congress
    September 25-27, 2017 Berlin, Germany
  • 2nd World Biotechnology Congress
    December 04-06, 2017 Sao Paulo, Brazil

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords