alexa Controlled Encapsulation of Hydrophobic Liquids in Hydrophilic Polymer Nanofibers by Co-electrospinning†
Biomedical Sciences

Biomedical Sciences

Journal of Bioengineering & Biomedical Science

Author(s): JE DIAZ

Abstract Share this page

There are many technical situations, such as various biological or medical applications, in which a hydrophobic fluid must be encapsulated inside a hydrophilic polymer shell in the form of tiny microscopic pieces. A novel approach is presented, based on the co-electrospinning of the hydrophilic polymer melt (outside) and the hydrophobic fluid (inside), which results in beaded micro- and nanofibers, such that the hydrophobic fluid is efficiently encapsulated inside the beads. For the selected fluid couple, the low liquid–liquid surface tension and the high viscosity of the melt prevent the varicose break-up of inner fluid in the coaxial electrified jet until the very end of the co-electrospinning process. The resulting fibers present beads filled with the hydrophobic fluid, separated by a rather uniform distance whose length depends partially on the melt flow rate. The bead diameter grows with the inner flow rate, going from a monosized to a bisized distribution. In the case under study, the maximum relative (inner-to-outer) flow rate is one. The diameter of the solid fibers between beads scales well with existing theories for simple electrospinning.

This article was published in Adv Funct Mater and referenced in Journal of Bioengineering & Biomedical Science

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version