alexa Controlled proliferation by multigene metabolic engineering enhances the productivity of Chinese hamster ovary cells.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Proteomics & Bioinformatics

Author(s): Fussenegger M, Schlatter S, Dtwyler D, Mazur X, Bailey JE

Abstract Share this page

Abstract The eukaryotic cell cycle is regulated by a complex network of many proteins. Effective reprogramming of this complex regulatory apparatus to achieve bioprocess goals, such as cessation of proliferation at high cell density to allow an extended period of high production, can require coordinated manipulation of multiple genes. Previous efforts to establish inducible cell-cycle arrest of Chinese hamster ovary (CHO) cells by regulated expression of the cyclin-dependent kinase inhibitor (CDI) p21 failed. By tetracycline-regulated coexpression of p21 and the differentiation factor CCAAT/enhancer-binding protein alpha (which both stabilizes and induces p21), we have achieved effective cell-cycle arrest. Production of a model heterologous protein (secreted alkaline phosphatase; SEAP) has been increased 10-15 times, on a per cell basis, relative to an isogenic control cell line. Because activation of apoptosis response is a possible complication in a proliferation-arrested culture, the survival gene bcl-xL was coexpressed with another CDI, p27, found to enable CHO cell-cycle arrest predominantly in G1 phase. CHO cells stably transfected with a tricistronic construct containing the genes for these proteins and for SEAP showed 30-fold higher SEAP expression than controls. This article was published in Nat Biotechnol and referenced in Journal of Proteomics & Bioinformatics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 9th International Conference on Bioinformatics
    October 23-24, 2017 Paris, France
  • 9th International Conference and Expo on Proteomics
    October 23-25, 2017 Paris, France

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version