alexa Controlled release from hydrogel-based solid matrices. A model accounting for water up-take, swelling and erosion.
Engineering

Engineering

Industrial Engineering & Management

Author(s): Lamberti G, Galdi I, Barba AA

Abstract Share this page

Abstract Design and realization of drug delivery systems based on polymer matrices could be greatly improved by modeling the phenomena which take place after the systems administration. Availability of a reliable mathematical model, able to predict the release kinetic from drug delivery systems, could actually replace the resource-consuming trial-and-error procedures usually followed in the manufacture of these latter. In this work, the complex problem of drug release from polymer (HPMC) based matrices systems was faced. The phenomena, previously observed and experimentally quantified, of water up-take, system swelling and erosion, and drug release were here described by transient mass balances with diffusion. The resulting set of differential equations was solved by using finite element methods. Two different systems were investigated: cylindrical matrices in which the transport phenomena were allowed only by lateral surfaces ("radial" case), and cylindrical matrices with the overall surface exposed to the solvent ("overall" case). A code able to describe quantitatively all the observed phenomena has been obtained. Copyright © 2011 Elsevier B.V. All rights reserved. This article was published in Int J Pharm and referenced in Industrial Engineering & Management

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords