alexa Controlled release of bioactive TGF-beta 1 from microspheres embedded within biodegradable hydrogels.
Materials Science

Materials Science

Journal of Nanomedicine & Nanotechnology

Author(s): DeFail AJ, Chu CR, Izzo N, Marra KG

Abstract Share this page

Abstract Transforming growth factor-beta1 (TGF-beta1) is of great relevance to cartilage development and regeneration. A delivery system for controlled release of growth factors such as TGF-beta1 may be therapeutic for cartilage repair. We have encapsulated TGF-beta1 into poly(DL-lactide-co-glycolide) (PLGA) microspheres, and subsequently incorporated the microspheres into biodegradable hydrogels. The hydrogels are poly(ethylene glycol) based, and the degradation rate of the hydrogels is controlled by the non-toxic cross-linking reagent, genipin. Release kinetics of TGF-beta1 were assessed using ELISA and the bioactivity of the released TGF-beta1 was evaluated using a mink lung cell growth inhibition assay. The controlled release of TGF-beta1 encapsulated within microspheres embedded in scaffolds is better controlled when compared to delivery from microspheres alone. ELISA results indicated that TGF-beta1 was released over 21 days from the delivery system, and the burst release was decreased when the microspheres were embedded in the hydrogels. The concentration of TGF-beta1 released from the gels can be controlled by both the mass of microspheres embedded in the gel, and by the concentration of genipin. Additionally, the scaffold permits containment and conformation of the spheres to the defect shape. Based on these in vitro observations, we predict that we can develop a microsphere-loaded hydrogel for controlled release of TGF-beta1 to a cartilage wound site. This article was published in Biomaterials and referenced in Journal of Nanomedicine & Nanotechnology

Relevant Expert PPTs

Recommended Conferences

  • Nano Congress for Next Generation
    August 31-September 01, 2017 Brussels,Belgium
  • Graphene & 2D Materials
    September 14-15, 2017 Edinburgh, Scotland
  • Graphene & 2D Materials
    November 6-7, 2017 Frankfurt, Germany
  • World Congress on Nanoscience and Nano Technology
    October 16-17, 2017 Dubai, UAE
  • World Medical Nanotechnology Congress
    October 18-19, 2017 Osaka, Japan
  • Nanoscienceand Molecular Nanotechnology
    Nov 06-08, 2017 Frankfurt, Germany
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version