alexa Controlling the false discovery rate in behavior genetics research.
Psychiatry

Psychiatry

Journal of Psychiatry

Author(s): Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I, Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I

Abstract Share this page

Abstract The screening of many endpoints when comparing groups from different strains, searching for some statistically significant difference, raises the multiple comparisons problem in its most severe form. Using the 0.05 level to decide which of the many endpoints' differences are statistically significant, the probability of finding a difference to be significant even though it is not real increases far beyond 0.05. The traditional approach to this problem has been to control the probability of making even one such error--the Bonferroni procedure being the most familiar procedure achieving such control. However, the incurred loss of power stemming from such control led many practitioners to neglect multiplicity control altogether. The False Discovery Rate (FDR), suggested by Benjamini and Hochberg [J Royal Stat Soc Ser B 57 (1995) 289], is a new, different, and compromising point of view regarding the error in multiple comparisons. The FDR is the expected proportion of false discoveries among the discoveries, and controlling the FDR goes a long way towards controlling the increased error from multiplicity while losing less in the ability to discover real differences. In this paper we demonstrate the problem in two studies: the study of exploratory behavior [Behav Brain Res (2001)], and the study of the interaction of strain differences with laboratory environment [Science 284 (1999) 1670]. We explain the FDR criterion, and present two simple procedures that control the FDR. We demonstrate their increased power when used in the above two studies.
This article was published in Behav Brain Res and referenced in Journal of Psychiatry

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords