alexa Converting a breast cancer microarray signature into a high-throughput diagnostic test.
Diabetes & Endocrinology

Diabetes & Endocrinology

Journal of Steroids & Hormonal Science

Author(s): Glas AM, Floore A, Delahaye LJ, Witteveen AT, Pover RC,

Abstract Share this page

Abstract BACKGROUND: A 70-gene tumor expression profile was established as a powerful predictor of disease outcome in young breast cancer patients. This profile, however, was generated on microarrays containing 25,000 60-mer oligonucleotides that are not designed for processing of many samples on a routine basis. RESULTS: To facilitate its use in a diagnostic setting, the 70-gene prognosis profile was translated into a customized microarray (MammaPrint) containing a reduced set of 1,900 probes suitable for high throughput processing. RNA of 162 patient samples from two previous studies was subjected to hybridization to this custom array to validate the prognostic value. Classification results obtained from the original analysis were then compared to those generated using the algorithms based on the custom microarray and showed an extremely high correlation of prognosis prediction between the original data and those generated using the custom mini-array (p < 0.0001). CONCLUSION: In this report we demonstrate for the first time that microarray technology can be used as a reliable diagnostic tool. The data clearly demonstrate the reproducibility and robustness of the small custom-made microarray. The array is therefore an excellent tool to predict outcome of disease in breast cancer patients.
This article was published in BMC Genomics and referenced in Journal of Steroids & Hormonal Science

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords