alexa COP9 subunits 4 and 5 target soluble guanylyl cyclase α1 and p53 in prostate cancer cells.
Oncology

Oncology

Journal of Carcinogenesis & Mutagenesis

Author(s): Bhansali M, Shemshedini L

Abstract Share this page

Abstract Our laboratory previously has identified soluble guanylyl cyclase α1 (sGCα1) as a direct target of androgen receptor and essential for prostate cancer cell growth via a pathway independent of nitric oxide (NO) signaling. We identified the COP9 signalosome subunit 4 (CSN4) as a novel interacting partner for sGCα1. Importantly, the CSN4-sGCα1 interaction inhibits sGCα1 proteasomal degradation. Consistent with this, disruption of CSN4 led to a significant decrease in prostate cancer cell proliferation, which was significantly but not completely rescued by sGCα1 overexpression, opening the possibility of an additional target of CSN4. Interestingly, immunoprecipitation experiments showed that p53 is found in the CSN4-sGCα1 cytoplasmic protein complex. However, in contrast to sGCα1, p53 protein stability was compromised by CSN4, leading to prostate cancer cell survival and proliferation. Interestingly, we observed that CSN4 was overexpressed in prostate tumors, and its protein level correlates directly with sGCα1 and inversely with p53 proteins, mimicking what was observed in prostate cancer cells. Our data further showed that CSN4 silencing decreased CSN5 protein levels and suggest that the CSN4 effects on sGCα1 and p53 proteins are mediated by CSN5. Lastly, our study showed that caseine kinase-2 (CK2) was involved in regulating p53 and sGCα1 protein stability as determined by both disruption of CK2 expression and inhibition of its kinase activity. Collectively, our study has identified a novel endogenous CSN4-CSN5-CK2 complex with sGCα1and p53 that oppositely controls the stability of these 2 proteins and provides prostate cancer cells an important mechanism for survival and proliferation.
This article was published in Mol Endocrinol and referenced in Journal of Carcinogenesis & Mutagenesis

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords