alexa Copper modulation of ion channels of PrP[106-126] mutant prion peptide fragments.
Pharmaceutical Sciences

Pharmaceutical Sciences

Biochemistry & Pharmacology: Open Access

Author(s): Kourie JI, Kenna BL, Tew D, Jobling MF, Curtain CC,

Abstract Share this page

Abstract We have shown previously that the protease-resistant and neurotoxic prion peptide fragment PrP[106-126] of human PrP incorporates into lipid bilayer membranes to form heterogeneous ion channels, one of which is a Cu(2+)-sensitive fast cation channel. To investigate the role of PrP[106-126]'s hydrophobic core, AGAAAAGA, on its ability to form ion channels and their regulation with Cu(2+), we used the lipid-bilayer technique to examine membrane currents induced as a result of PrP[106-126] (AA/SS) and PrP[106-126] (VVAA/SSSS) interaction with lipid membranes and channel formation. Channel analysis of the mutant (VVAAA/SSS), which has a reduced hydrophobicity due to substitution of hydrophobic residues with the hydrophilic serine residue, showed a significant change in channel activity, which reflects a decrease in the beta-sheet structure, as shown by CD spectroscopy. One of the channels formed by the PrP[106-126] mutant has fast kinetics with three modes: burst, open and spike. The biophysical properties of this channel are similar to those of channels formed with other aggregation-prone amyloids, indicating their ability to form the common beta sheet-based channel structure. The current-voltage (I-V) relationship of the fast cation channel, which had a reversal potential, E(rev), between -40 and -10 mV, close to the equilibrium potential for K(+) ( E(K) = -35 mV), exhibited a sigmoidal shape. The value of the maximal slope conductance (g(max)) was 58 pS at positive potentials between 0 and 140 mV. Cu(2+) shifted the kinetics of the channel from being in the open and "burst" states to the spike mode. Cu(2+) reduced the probability of the channel being open (P(o)) and the mean open time (T(o)) and increased the channel's opening frequency (F(o)) and the mean closed time (T(c)) at a membrane potential ( V(m)) between +20 and + 140 mV. The fact that Cu(2+) induced changes in the kinetics of this channel with no changes in its conductance, indicates that Cu(2+) binds at the mouth of the channel via a fast channel block mechanism. The Cu(2+)-induced changes in the kinetic parameters of this channel suggest that the hydrophobic core is not a ligand Cu(2+) site, and they are in agreement with the suggestion that the Cu(2+)-binding site is located at M(109) and H(111) of this prion fragment. Although the data indicate that the hydrophobic core sequence plays a role in PrP[106-126] channel formation, it is not a binding site for Cu(2+). We suggest that the role of the hydrophobic region in modulating PrP toxicity is to influence PrP assembly into neurotoxic channel conformations. Such conformations may underlie toxicity observed in prion diseases. We further suggest that the conversions of the normal cellular isoform of prion protein (PrP(c)) to abnormal scrapie isoform (PrP(Sc)) and intermediates represent conversions to protease-resistant neurotoxic channel conformations. This article was published in J Membr Biol and referenced in Biochemistry & Pharmacology: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords