alexa Copper-catalyzed protein oxidation and its modulation by carbon dioxide: enhancement of protein radicals in cells.
Biochemistry

Biochemistry

Enzyme Engineering

Author(s): Ramirez DC, Mejiba SE, Mason RP

Abstract Share this page

Abstract It is well known that hydrogen peroxide (H2O2)-induced copper-catalyzed fragmentation of proteins follows a site-specific oxidative mechanism mediated by hydroxyl radical-like species (i.e. Cu(I)O, Cu(II)/*OH or Cu(III)) that ends in increased carbonyl formation and protein fragmentation. We have found that the nitrone spin trap DMPO (5,5-dimethyl-1-pyrroline N-oxide) prevented such processes by trapping human serum albumin (HSA)-centered radicals, in situ and in real time, before they reacted with oxygen. When (bi)carbonate (CO2, H2CO3, HCO3- and CO3(-2)) was added to the reaction mixture, it blocked fragmentation mediated by hydroxyl radical-like species but enhanced DMPO-trappable radical sites in HSA. In the past, this effect would have been explained by oxidation of (bi)carbonate to a carbonate radical anion (CO3*) by a bound hydroxyl radical-like species. We now propose that the CO3* radical is formed by the reduction of HOOCO2- (a complex of H2O2 with CO2) by the protein-Cu(I) complex. CO3* diffuses and produces more DMPO-trappable radical sites but does not fragment HSA. We were also able, for the first time, to detect discrete but highly specific H2O2-induced copper-catalyzed CO3*-mediated induction of DMPO-trappable protein radicals in functioning RAW 264.7 macrophages. We conclude that carbon dioxide modulates H2O2-induced copper-catalyzed oxidative damage to proteins by preventing site-specific fragmentation and enhancing DMPO-trappable protein radicals in functioning cells. The pathophysiological significance of our findings is discussed. This article was published in J Biol Chem and referenced in Enzyme Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 3rd International Conference on Genetic and Protein Engineering
    Nov 02-Nov 03, 2017 Las Vegas, USA

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords