alexa Correction of hyperglycemia in diabetic mice transplanted with reversibly immortalized pancreatic beta cells controlled by the tet-on regulatory system.
General Science

General Science

Journal of Biotechnology & Biomaterials

Author(s): MiloLandesman D, Surana M, Berkovich I, Compagni A, Christofori G,

Abstract Share this page

Abstract Pancreatic beta cell lines may offer an abundant source of cells for beta-cell replacement in type I diabetes. Using regulatory elements of the bacterial tetracycline (tet) operon for conditional expression of SV40 T antigen oncoprotein in transgenic mouse beta cells, we have shown that reversible immortalization is an efficient approach for regulated beta-cell expansion, accompanied by enhanced cell differentiation upon growth arrest. The original system employed the tet-off approach, in which the cells proliferate in the absence of tet ligands and undergo growth arrest in their presence. The disadvantage of this system is the need for continuous treatment with the ligand in vivo for maintaining growth arrest. Here we utilized the tet-on regulatory system to generate beta cell lines in which proliferation is regulated in reverse: these cells divide in the presence of tet ligands, and undergo growth arrest in their absence, as judged by [3H]thymidine and BrdU incorporation assays. These cell lines were derived from insulinomas, which heritably developed in transgenic mice continuously treated with the tet derivative doxycycline (dox). The cells produce and secrete high amounts of insulin, and can restore and maintain euglycemia in syngeneic streptozotocin-induced diabetic mice in the absence of dox. Such a system is more suitable for transplantation, compared with cells regulated by the tet-off approach, because ligand treatment is limited to cell expansion in culture and is not required for long-term maintenance of growth arrest in vivo.
This article was published in Cell Transplant and referenced in Journal of Biotechnology & Biomaterials

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords