alexa Correlation analysis of electromyogram signals for multiuser myoelectric interfaces.
Biomedical Sciences

Biomedical Sciences

Journal of Bioengineering & Biomedical Science

Author(s): Khushaba RN

Abstract Share this page

Abstract An inability to adapt myoelectric interfaces to a novel user's unique style of hand motion, or even to adapt to the motion style of an opposite limb upon which the interface is trained, are important factors inhibiting the practical application of myoelectric interfaces. This is mainly attributed to the individual differences in the exhibited electromyogram (EMG) signals generated by the muscles of different limbs. We propose in this paper a multiuser myoelectric interface which easily adapts to novel users and maintains good movement recognition performance. The main contribution is a framework for implementing style-independent feature transformation by using canonical correlation analysis (CCA) in which different users' data is projected onto a unified-style space. The proposed idea is summarized into three steps: 1) train a myoelectric pattern classifier on the set of style-independent features extracted from multiple users using the proposed CCA-based mapping; 2) create a new set of features describing the movements of a novel user during a quick calibration session; and 3) project the novel user's features onto a lower dimensional unified-style space with features maximally correlated with training data and classify accordingly. The proposed method has been validated on a set of eight intact-limbed subjects, left-and-right handed, performing ten classes of bilateral synchronous fingers movements with four electrodes on each forearm. The method was able to overcome individual differences through the style-independent framework with accuracies of > 83\% across multiple users. Testing was also performed on a set of ten intact-limbed and six below-elbow amputee subjects as they performed finger and thumb movements. The proposed framework allowed us to train the classifier on a normal subject's data while subsequently testing it on an amputee's data after calibration with a performance of > 82\% on average across all amputees. This article was published in IEEE Trans Neural Syst Rehabil Eng and referenced in Journal of Bioengineering & Biomedical Science

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version