alexa Correlation between melanogenic and catalase activity in in vitro human melanocytes: a synergic strategy against oxidative stress.
Dermatology

Dermatology

Dermatology and Dermatologic Diseases

Author(s): Maresca V, Flori E, Briganti S, Mastrofrancesco A, Fabbri C, , Maresca V, Flori E, Briganti S, Mastrofrancesco A, Fabbri C,

Abstract Share this page

Abstract UV-induced DNA damage can lead to melanoma, the most dangerous form of skin cancer. Understanding the mechanisms employed by melanocytes to protect against UV is therefore a key issue. In melanocytes, catalase is the main enzyme responsible for degrading hydrogen peroxide and we have previously shown that that low basal levels of catalase activity are associated with the light phototype in in vitro and ex vivo models. Here we investigate the possible correlation between its activity and melanogenesis in primary cultures of human melanocytes. We show that while the total melanin concentration is directly correlated to the level of pigmentation, the more the degree of pigmentation increased, the lower the proportion of pheomelanin present. Moreover, in human melanocytes in vitro, catalase-specific mRNA, protein and enzymatic activity were all directly correlated with total cellular melanin content. We also observed that immediately after a peroxidative treatment, the increase in reactive oxygen species was inversely associated with pigmentation level. Darkly pigmented melanocytes therefore possess two protective strategies represented by melanins and catalase activity that are likely to act synergistically to counteract the deleterious effects of UV radiation. By contrast, lightly pigmented melanocytes possess lower levels of melanogenic and catalase activity and are therefore more susceptible to accumulate damage after UV exposition. This article was published in Pigment Cell Melanoma Res and referenced in Dermatology and Dermatologic Diseases

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords