alexa Cortisol decreases bone formation by inhibiting periosteal cell proliferation
Pediatrics

Pediatrics

Maternal and Pediatric Nutrition

Author(s): Chyun YS

Abstract Share this page

We tested the hypothesis that the inhibitory effect of cortisol on bone growth is primarily on the periosteum. Fetal rat calvaria were maintained in organ culture, labeled with radioactive proline or thymidine, and then dissected to separate periosteum from the osteoblast-rich central bone. There was a dose- and time-dependent inhibition of thymidine incorporation into DNA in the periosteum which was significant at 24 h. These observations were further supported by decreases in the dry weight and DNA content of the periosteum at 96 h. Incorporation of thymidine and proline into the central bone were decreased only at 96 h. Pulse-chase studies using a high concentration of cortisol (10(-6) M) indicated that increased cell attrition may also play a role in the inhibitory effect of cortisol. We propose that the primary effect of cortisol on bone growth is an inhibition of proliferation of the periosteal cells which give rise to osteoblasts. The subsequent decrease in the incorporation of proline into the central bone may be the consequence of this inhibition.

This article was published in Endocrinology. and referenced in Maternal and Pediatric Nutrition

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords