alexa Coupling mechanics to charge transport in carbon nanotube mechanical resonators.
Engineering

Engineering

Journal of Applied Mechanical Engineering

Author(s): Lassagne B, Tarakanov Y, Kinaret J, GarciaSanchez D, Bachtold A

Abstract Share this page

Abstract Nanoelectromechanical resonators have potential applications in sensing, cooling, and mechanical signal processing. An important parameter in these systems is the strength of coupling the resonator motion to charge transport through the device. We investigated the mechanical oscillations of a suspended single-walled carbon nanotube that also acts as a single-electron transistor. The coupling of the mechanical and the charge degrees of freedom is strikingly strong as well as widely tunable (the associated damping rate is approximately 3 x 10(6) Hz). In particular, the coupling is strong enough to drive the oscillations in the nonlinear regime. This article was published in Science and referenced in Journal of Applied Mechanical Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords