alexa Coxsackie and adenovirus receptor (CAR)-dependent and major histocompatibility complex (MHC) class I-independent uptake of recombinant adenoviruses into human tumour cells


Drug Designing: Open Access

Author(s): McDonald D, Stockwin L, Matzow T, Blair Zajdel ME, Blair GE

Abstract Share this page

The role of two receptors, previously proposed to mediate the entry of adenoviruses into human cells, the coxsackie and adenovirus receptor (CAR) and the major histocompatibility complex (MHC) class I heavy chain has been investigated. The expression of MHC class I in many tumours is reduced or absent, therefore if this were a means by which adenoviruses gained entry into cells, it would have important implications for their application in cancer treatment. In order to determine if MHC class I heavy chain is involved in adenovirus type 5 (Ad5) uptake, the binding of recombinant Ad5 fibre knob domain (which mediates viral attachment) to human cell lines that had greatly different levels of surface MHC class I was studied. We also created derivatives of a non-permissive Chinese hamster ovary (CHO) cell line that expressed human class I (HLA-A2) and found that these cells did not bind fibre or take up virus. In addition, the extracellular domain of CAR was expressed in E. coli and used to generate a polyclonal anti-CAR antibody. This antibody blocked both 125I labelled fibre knob binding and virus uptake. Thus CAR, and not MHC class I, is a receptor for human adenoviruses in cultured tumour cells. Tissue CAR levels may therefore be an important factor in the efficiency of adenovirus-mediated gene therapy.

  • To read the full article Visit
  • Open Access
This article was published in Gene Ther and referenced in Drug Designing: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version