alexa CpG methylation, chromatin structure and gene silencing-a three-way connection.
Molecular Biology

Molecular Biology

Cell & Developmental Biology

Author(s): Razin A

Abstract Share this page

Abstract The three-way connection between DNA methylation, gene activity and chromatin structure has been known for almost two decades. Nevertheless, the molecular link between methyl groups on the DNA and the positioning of nucleosomes to form an inactive chromatin configuration was missing. This review discusses recent experimental data that may, for the first time, shed light on this molecular link. MeCP2, which is a known methylcytosine-binding protein, has been shown to possess a transcriptional repressor domain (TRD) that binds the corepressor mSin3A. This corepressor protein constitutes the core of a multiprotein complex that includes histone deacetylases (HDAC1 and HDAC2). Transfection and injection experiments with methylated constructs have revealed that the silenced state of a methylated gene, which is associated with a deacetylated nucleosomal structure, could be relieved by the deacetylase inhibitor, trichostatin A. Thus, methylation plays a pivotal role in establishing and maintaining an inactive state of a gene by rendering the chromatin structure inaccessible to the transcription machinery.
This article was published in EMBO J and referenced in Cell & Developmental Biology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version