alexa Cranberry changes the physicochemical surface properties of E. coli and adhesion with uroepithelial cells.
Pharmaceutical Sciences

Pharmaceutical Sciences

Pharmaceutica Analytica Acta

Author(s): Liu Y, GallardoMoreno AM, PinzonArango PA, Reynolds Y, Rodriguez G,

Abstract Share this page

Abstract Cranberries have been suggested to decrease the attachment of bacteria to uroepithelial cells (UC), thus preventing urinary tract infections, although the mechanisms are not well understood. A thermodynamic approach was used to calculate the Gibbs free energy of adhesion changes (DeltaG(adh)) for bacteria-UC interactions, based on measuring contact angles with three probe liquids. Interfacial tensions and DeltaG(adh) values were calculated for Escherichia coli HB101pDC1 (P-fimbriated) and HB101 (non-fimbriated) exposed to cranberry juice (0-27 wt.\%). HB101pDC1 can form strong bonds with the Gal-Gal disaccharide receptor on uroepithelial cells, while HB101-UC interactions are only non-specific. For HB101 interacting with UC, DeltaG(adh) was always negative, suggesting favorable adhesion, and the values were insensitive to cranberry juice concentration. For the HB101pDC1-UC system, DeltaG(adh) became positive at 27wt.\% cranberry juice, suggesting that adhesion was unfavorable. Acid-base (AB) interactions dominated the interfacial tensions, compared to Lifshitz-van der Waals (LW) interactions. Exposure to cranberry juice increased the AB component of the interfacial tension of HB101pDC1. LW interactions were small and insensitive to cranberry juice concentration. The number of bacteria attached to UC was quantified in batch adhesion assays and quantitatively correlated with DeltaG(adh). Since the thermodynamic approach should not agree with the experimental results when specific interactions are present, such as HB101pDC-UC ligand-receptor bonds, our results may suggest that cranberry juice disrupts bacterial ligand-UC receptor binding. These results help form the mechanistic explanation of how cranberry products can be used to prevent bacterial attachment to host tissue, and may lead to the development of better therapies based on natural products. This article was published in Colloids Surf B Biointerfaces and referenced in Pharmaceutica Analytica Acta

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords