alexa Cripto: a tumor growth factor and more.


Journal of Clinical & Experimental Cardiology

Author(s): Adamson ED, Minchiotti G, Salomon DS

Abstract Share this page

Abstract Cripto, a growth factor with an EGF-like domain, and the first member of the EGF-CFC family of genes to be sequenced and characterized, contributes to deregulated growth of cancer cells. A role for Cripto in tumor development has been described in the human and the mouse. Members of the EGF-CFC family are found only in vertebrates: CFC proteins in zebrafish, Xenopus, chick, mouse and human have been characterized and indicate some common general functions in development. Cripto expression was first found in human and mouse embryonal carcinoma cells and male teratocarcinomas, and was demonstrated to be over-expressed in breast, cervical, ovarian, gastric, lung, colon, and pancreatic carcinomas in contrast to normal tissues where Cripto expression was invariably low or absent. Cripto may play a role in mammary tumorigenesis, since in vitro, Cripto induces mammary cell proliferation, reduces apoptosis, increases cell migration, and inhibits milk protein expression. This prediction is strengthened by observations of Cripto expression in 80\% of human and mouse mammary tumors. At least three important roles for Cripto in development have created considerable interest, and each activity may be distinct in its mechanism of receptor signaling. One role is in the patterning of the anterior-posterior axis of the early embryo, a second is a crucial role in the development of the heart, and a third is in potentiating branching morphogenesis and modulating differentiation in the developing mammary gland. Whether these properties are functions of different forms of Cripto, different Cripto receptors or the distinct domains within this 15-38 kDa glycoprotein are examined here, but much remains to be revealed about this evolutionarily conserved gene product. Since all Cripto receptors have not yet been determined with certainty, future possible uses as therapeutic targets remain to be developed. Cripto is released or shed from expressing cells and may serve as an accessible marker gene in the early to mid-progressive stages of breast and other cancers. Meanwhile some speculations on possible receptor complexes for Cripto signaling in mammary cells are offered here as a spur to further discoveries. Copyright 2002 Wiley-Liss, Inc. This article was published in J Cell Physiol and referenced in Journal of Clinical & Experimental Cardiology

Relevant Expert PPTs

Relevant Speaker PPTs

  • Donald silverberg
    Is correction of iron deficiency a new addition to the treatment of heart failure?
    PPT Version | PDF Version
  • Ahmed Zeidan
    Effects of intravenous iron in chronic kidney disease and heart failure
    PPT Version | PDF Version
  • Yosef Yarden
    Classically, the 3’untranslated region (3’UTR) is that region in eukaryotic protein-coding genes from the translation termination codon to the polyA signal. It is transcribed as an integral part of the mRNA encoded by the gene. However, there exists another kind of RNA, which consists of the 3’UTR alone, without all other elements in mRNA such as 5’UTR and coding region. The importance of independent 3’UTR RNA (referred as I3’UTR) was prompted by results of artificially introducing such RNA species into malignant mammalian cells. Since 1991, we found that the middle part of the 3’UTR of the human nuclear factor for interleukin-6 (NF-IL6) or C/EBP gene exerted tumor suppression effect in vivo. Our subsequent studies showed that transfection of C/EBP 3’UTR led to down-regulation of several genes favorable for malignancy and to up-regulation of some genes favorable for phenotypic reversion. Also, it was shown that the sequences near the termini of the C/EBP 3’UTR were important for its tumor suppression activity. Then, the C/EBP 3’UTR was found to directly inhibit the phosphorylation activity of protein kinase CPKC in SMMC-7721, a hepatocarcinoma cell line. Recently, an AU-rich region in the C/EBP 3’UTR was found also to be responsible for its tumor suppression. Recently we have also found evidence that the independent C/EBP 3’UTR RNA is actually exists in human tissues, such as fetal liver and heart, pregnant uterus, senescent fibroblasts etc. Through 1990’s to 2000’s, world scientists found several 3’UTR RNAs that functioned as artificial independent RNAs in cancer cells and resulted in tumor suppression. Interestingly, majority of genes for these RNAs have promoter-like structures in their 3’UTR regions, although the existence of their transcribed products as independent 3’UTR RNAs is still to be confirmed. Our studies indicate that the independent 3’UTR RNA is a novel non-coding RNA species whose function should be the regulation not of the expression of their original mRNA, but of some essential life activities of the cell as a whole.
    PPT Version | PDF Version
  • Guinchard Emmanuelle
    Non-invasive fetal RHD genotyping: Validation of the method with 200 patients
    PDF Version
  • Chien-Fu Hung
    Mark cancer cells for CTL attack through coating with viral antigenic peptides CTLs kill tumor with viral peptides
    PPT Version | PDF Version
  • Alexandra Mora
    Minimally invasive aesthetic procedures
    PPT Version | PDF Version
  • Ishfaq A Bukhari
    Protective Effect of Diltiazem and Fenofibrate Against Ischemia-reperfusion Induced Cardiac Arrhythmias in the Isolated Rat Heart.
    PPT Version | PDF Version
  • A Martin Gerdes
    Wrong about β-blockers! Wrong about positive inotropes! Wrong about Thyroid Hormone treatment of Heart Failure?
    PDF Version
  • Fatih Yalcin
    PDF Version
  • Samuel C Dudley
    Novel biomarkers for diastolic heart failure
    PDF Version
  • Abdulaziz U Joury
    Acute Myocardial Infarction as First Presentation among patients with Coronary Heart Disease
    PPT Version | PDF Version
  • Helena Dominguez
    Can we protect the brain against thromboembolism during open heart surgery? LAACS project
    PDF Version
  • Saverio Gentile
    Ion channels phosphorylopathy: 3rd International Conference on Clinical & Experimental Cardiology April 15-17, 2013 A link between genomic variations and heart arrhythmia
    PDF Version

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version