alexa Cryopreservation of flounder (Paralichthys olivaceus) embryos by vitrification.
Agri and Aquaculture

Agri and Aquaculture

Poultry, Fisheries & Wildlife Sciences

Author(s): Chen SL, Tian YS

Abstract Share this page

Abstract Conventional cryopreservation of complex teleost embryos has been unsuccessful, possibly because their large size (1-7 mm diameter), multi-compartmental structure and low water permeability lead to intracellular ice formation and chilling injury. To overcome these obstacles, we have developed a vitrification procedure for cryopreservation of flounder (Paralichthys olivaceus) embryos. In initial toxicity tests, propylene glycol (PG) and methanol (MeOH) were less toxic to embryos than dimethylformamide (DMF) or dimethyl sulfoxide (Me2SO), whereas ethylene glycol (EG) and glycerol (Gly) were toxic to all tested embryos. Embryos between four-somite and tail bud stages were more tolerant to vitrifying solutions than embryos in other developmental stages. Four vitrifying solutions (FVS1-FVS4) were prepared by combining a basic saline solution (BS2) and cryoprotectants PG and MeOH in different proportions (FVS1: 67, 20 and 13\%; FVS2: 60, 24 and 16\%; FVS3: 55, 27 and 18\%; FVS4: 50, 30 and 20\% of BS2, PG and MeOH, respectively). Their impact on flounder embryos was then compared. FVS1 produced the highest survival rate; whereas deformation rate was highest for FVS4. Five-step equilibration of embryos in FVS2 resulted in higher survival rates than equilibration in 4, 3, 2 or 1 steps. Flounder embryos varying from the 14-somite to the pre-hatching stage were cryopreserved in the four vitrifying solutions in liquid nitrogen for 1-7 h. From eight experiments, 20 viable thawed embryos were recovered from 292 cryopreserved embryos. Fourteen larvae with normal morphology hatched successfully from the 20 surviving frozen-thawed embryos from five experiments. Embryos at the tail bud stage exhibited greater tolerance to vitrification than embryos at other stages. These results establish that cryopreservation of flounder embryos by vitrification is possible. The technology has many potential applications in teleost germplasm resource conservation. This article was published in Theriogenology and referenced in Poultry, Fisheries & Wildlife Sciences

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords