alexa Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: effects on in vitro and in vivo osteochondrogenesis.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Tissue Science & Engineering

Author(s): Lennon DP, Edmison JM, Caplan AI

Abstract Share this page

Abstract Rat mesenchymal stem cells (rMSCs) represent a small portion of the cells in the stromal compartment of bone marrow and have the potential to differentiate into bone, cartilage, fat, and fibrous tissue. These mesenchymal progenitor cells were maintained as primary isolates and as subcultured cells in separate closed modular incubator chambers purged with either 95\% air and 5\% CO(2) (20\% or control oxygen) or 5\% oxygen, 5\% CO(2), and 90\% nitrogen (5\% or low oxygen). At first passage, some cells from each oxygen condition were loaded into porous ceramic vehicles and implanted into syngeneic host animals in an in vivo assay for osteochondrogenesis. The remaining cells were continued in vitro in the same oxygen tension as for primary culture or were switched to the alternate condition. The first passage cells were examined for in vitro osteogenesis with assays involving the quantification of alkaline phosphatase activity and calcium and DNA content as well as by von Kossa staining to detect mineralization. Cultures maintained in low oxygen had a greater number of colonies as primary isolates and proliferated more rapidly throughout their time in vitro, as indicated by hemacytometer counts at the end of primary culture and increased DNA values for first passage cells. Moreover, rMSCs cultivated in 5\% oxygen produced more bone than cells cultured in 20\% oxygen when harvested and loaded into porous ceramic cubes and implanted into syngeneic host animals. Finally, markers for osteogenesis, including alkaline phosphatase activity, calcium content, and von Kossa staining, were elevated in cultures which had been in low oxygen throughout their cultivation time. Expression of these markers was usually increased above basal levels when cells were switched from control to low oxygen at first passage and decreased for cells switched from low to control oxygen. We conclude that rMSCs in culture function optimally in an atmosphere of reduced oxygen that more closely approximates documented in vivo oxygen tension. Copyright 2001 Wiley-Liss, Inc. This article was published in J Cell Physiol and referenced in Journal of Tissue Science & Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 6th International Conference on Tissue Engineering and Regenerative Medicine
    August 23-24 , 2017 San Francisco, California ,USA
  • 8th International Conference on Tissue Science and Regenerative Medicine
    September 11-12, 2017 Singapore City, singapore
  • 9th Annual Conference on Stem Cell and Regenerative Medicine
    Sep 25-26, 2017 Berlin, Germany
  • 10th World Congress on Stem Cell and Biobanking
    October 23-24, 2017 Osaka, Japan

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords