alexa Current concepts in the treatment of articular cartilage defects.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Tissue Science & Engineering

Author(s): Minas T, Nehrer S

Abstract Share this page

Abstract Over time, articular cartilage loses the capacity to regenerate itself, making repair of articular surfaces difficult. Lavage and debridement may offer temporary relief of pain for up to 4.5 years, but offer no prospect of long-term cure. Likewise, marrow-stimulation techniques such as drilling, microfracture, or abrasion arthroplasty fail to yield long-term solutions because they typically promote the development of fibrocartilage. Fibrocartilage lacks the durability and many of the mechanical properties of the hyaline cartilage that normally covers articular surfaces. Repair tissue resembling hyaline cartilage can be induced to fill in articular defects by using perichondrial and periosteal grafts. However, these techniques are limited by the amount of tissue available for grafting and the tendency toward ossification of the repair tissue. Autogenous osteochondral arthroscopically implanted grafts (mosaicplasty), or open implantation of lateral patellar facet (Outerbridge technique), requires violation of subchondral bone. Osteochondral allografts risk viral transmission of disease and low chondrocyte viability, in addition to removal of host bone for implantation. Autologous chondrocyte implantation offers the opportunity to achieve biologic repair, enabling the surgeon to repair the joint surface with autologous articular cartilage. With this technique, care must be taken to ensure the safety, viability, and microbial integrity of the autologous cells while they are expanded in culture over a 4- to 5-week period prior to implantation. Surgical implantation requires equal attention to meticulous technique. In the future, physiologic repair also may become possible using mesenchymal stem cells or chondrocytes delivered surgically in an ex vivo-derived matrix. This would allow in vitro manipulation of cells with growth factors, mechanical stimuli, and matrix sizing to allow implantation of mature biosynthetic grafts which would allow treatment of larger defects with decreased rehabilitation and morbidity.
This article was published in Orthopedics and referenced in Journal of Tissue Science & Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 9th Annual Conference on Stem Cell and Regenerative Medicine
    Sep 25-26, 2017 Berlin, Germany
  • 10th World Congress on Stem Cell and Biobanking
    October 23-24, 2017 Osaka, Japan

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords