alexa Cytokine signalling in the beta-cell: a dual role for IFNgamma.
Diabetes & Endocrinology

Diabetes & Endocrinology

Journal of Diabetes & Metabolism

Author(s): Gysemans C, Callewaert H, Overbergh L, Mathieu C

Abstract Share this page

Abstract IFNgamma (interferon gamma), a cytokine typically secreted by infiltrating immune cells in insulitis in Type 1 diabetes, is by itself not detrimental to beta-cells, but, together with other cytokines, such as IL-1beta (interleukin 1beta) and TNFalpha (tumour necrosis factor alpha), or dsRNA (double-stranded RNA), it induces beta-cell apoptosis. The complex gene and protein networks that are altered by the combination of cytokines clearly point towards synergisms between these agents. IFNgamma acts mostly via JAK (Janus kinase) activation, with the transcription factors STAT-1 (signal transducer and activator of transcription-1) and IRF-1 (IFNgamma regulatory factor-1) playing a central role in the downstream pathway. The study of mice with a disruption of these transcription factors has revealed a possible dual role for IFNgamma in beta-cell destruction by cytokines or dsRNA. We demonstrated that the absence of STAT-1 from beta-cells completely protects against IFNgamma+IL-1beta- and IFNgamma+dsRNA-mediated beta-cell death in vitro, whereas absence of IRF-1 does not prevent cytokine-induced beta-cell apoptosis. In vivo, a lack of the IRF-1 gene in pancreatic islets even promotes low-dose streptozotocin-induced diabetes, whereas lack of STAT-1 confers resistance against beta-cell death following low-dose streptozotocin-induced diabetes. Additionally, IRF-1(-/-) islets are more sensitive to PNF (primary islet non-function) after transplantation in spontaneously diabetic NOD (non-obese diabetic) mice, whereas STAT-1(-/-) islets are fully protected. Moreover, proteomic analysis of beta-cells exposed to IFNgamma or IFNgamma+IL-1beta confirms that very different pathways are activated by IFNgamma alone compared with the combination. We conclude that IFNgamma may play a dual role in immune-induced beta-cell destruction. Transcription factors drive this dual role, with STAT-1 driving beta-cell destruction and IRF-1 possibly playing a role in up-regulation of protective pathways induced by IFNgamma. This article was published in Biochem Soc Trans and referenced in Journal of Diabetes & Metabolism

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords