alexa Cytosine residues influence kidney accumulations of 99mTc-labeled morpholino oligomers.
Oncology

Oncology

Journal of Cancer Clinical Trials

Author(s): Liu G, He J, Zhang S, Liu C, Rusckowski M,

Abstract Share this page

Abstract Watson-Crick pairing between complementary oligomers is proving to be an effective means for rapidly directing radioisotopes specifically to the exterior surface of cancer cells in vivo. In such pretargeting applications, it is highly desirable that the excess of isotopically labeled oligomers, which do not bind to the cancer cells, be rapidly cleared from the body. In this context, understanding the influence of chain length and base sequence of the radiolabeled oligomers is critical. We had earlier determined that the kidneys are the principal targets of short-chain radiolabeled morpholino oligomers (MORFs). To explain these observations, MORFs consisting of uniform cytosines (Cs), uniform thymines (Ts), uniform adenines (As), and uniform AAG repeat were labeled with technetium-99m (99mTc) and studied in normal mice. In a limited investigation of the influence of oligomer backbone, a 20-mer MORF (MORF20) with a base sequence rich in Cs was compared with a phosphoromonothioate DNA (S-DNA20) of the same sequence. The in vivo behavior of the labeled MORFs was nearly identical in all organs, with the exception of kidneys. The kidney accumulations were about 25- to 80-fold higher for the uniform Cs relative to the other three uniform MORFs at 3 hours. The S-DNA20 rich in Cs showed only modest kidney accumulations compared with the equivalent MORF20, presumably because of preferential clearance of the S-DNA20 through the liver. Urine analysis showed no evidence of intact labeled S-DNA20 in contrast to fully intact labeled MORF20. We conclude that the high kidney levels observed by us previously for MORFs are most likely due largely to the C residues in the base sequence. In the case of S-DNAs, this phenomenon is partly disguised by the increased hepatic excretion and degradation. These results show that the base sequences of MORFs, and probably other oligomers as well, are an important determinant of biodistribution. This article was published in Antisense Nucleic Acid Drug Dev and referenced in Journal of Cancer Clinical Trials

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords