alexa Daily melatonin administration to middle-aged male rats suppresses body weight, intraabdominal adiposity, and plasma leptin and insulin independent of food intake and total body fat.
Diabetes & Endocrinology

Diabetes & Endocrinology

Journal of Diabetes & Metabolism

Author(s): WoldenHanson T, Mitton DR, McCants RL, Yellon SM, Wilkinson CW,

Abstract Share this page

Abstract Pineal melatonin secretion declines with aging, whereas visceral fat, plasma insulin, and plasma leptin tend to increase. We have previously demonstrated that daily melatonin administration at middle age suppressed male rat intraabdominal visceral fat, plasma leptin, and plasma insulin to youthful levels; the current study was designed to begin investigating mechanisms that mediate these responses. Melatonin (0.4 microg/ml) or vehicle was administered in the drinking water of 10-month-old male Sprague Dawley rats (18/treatment) for 12 weeks. Half (9/treatment) were then killed, and the other half were submitted to cross-over treatment for an additional 12 weeks. Twelve weeks of melatonin treatment decreased (P<0.05) body weight (BW; by 7\% relative to controls), relative intraabdominal adiposity (by 16\%), plasma leptin (by 33\%), and plasma insulin (by 25\%) while increasing (P<0.05) locomotor activity (by 19\%), core body temperature (by 0.5 C), and morning plasma corticosterone (by 154\%), restoring each of these parameters toward more youthful levels. Food intake and total body fat were not changed by melatonin treatment. Melatonin-treated rats that were then crossed over to control treatment for a further 12 weeks gained BW, whereas control rats that were crossed to melatonin treatment lost BW, but food intake did not change in either group. Feed efficiency (grams of BW change per g cumulative food intake), a measure of metabolic function, was negative in melatonin-treated rats and positive in control rats before cross-over (P<0.001); this relationship was reversed after cross-over (P<0.001). Thus, melatonin treatment in middle age decreased BW, intraabdominal adiposity, plasma insulin, and plasma leptin, without altering food intake or total adiposity. These results suggest that the decrease in endogenous melatonin with aging may alter metabolism and physical activity, resulting in increased BW, visceral adiposity, and associated detrimental metabolic consequences. This article was published in Endocrinology and referenced in Journal of Diabetes & Metabolism

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version