alexa Decoding fingertip trajectory from electrocorticographic signals in humans.


International Journal of Neurorehabilitation

Author(s): Nakanishi Y, Yanagisawa T, Shin D, Chen C, Kambara H,

Abstract Share this page

Abstract Seeking to apply brain-machine interface technology in neuroprosthetics, a number of methods for predicting trajectory of the elbow and wrist have been proposed and have shown remarkable results. Recently, the prediction of hand trajectory and classification of hand gestures or grasping types have attracted considerable attention. However, trajectory prediction for precise finger motion has remained a challenge. We proposed a method for the prediction of fingertip motions from electrocorticographic signals in human cortex. A patient performed extension/flexion tasks with three fingers. Average Pearson's correlation coefficients and normalized root-mean-square errors between decoded and actual trajectories were 0.83-0.90 and 0.24-0.48, respectively. To confirm generalizability to other users, we applied our method to the BCI Competition IV open data sets. Our method showed that the prediction accuracy of fingertip trajectory could be equivalent to that of other results in the competition. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved. This article was published in Neurosci Res and referenced in International Journal of Neurorehabilitation

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version