alexa Decrease in cortical activation during learning of a multi-joint discrete motor task.
Physicaltherapy & Rehabilitation

Physicaltherapy & Rehabilitation

International Journal of Physical Medicine & Rehabilitation

Author(s): Ikegami T, Taga G

Abstract Share this page

Abstract Understanding how the brain learns motor skills remains a very challenging task. To elucidate the neural mechanism underlying motor learning, we assessed brain activation changes on a trial-by-trial basis during learning of a multi-joint discrete motor task (kendama task). We used multi-channel near-infrared spectroscopy (NIRS) while simultaneously measuring upper limb movement changes by using a 3D motion capture system. Fourteen right-handed participants performed the task using their right upper limb while sitting a chair. The task involved tossing a ball connected by a string to the kendama stick (picking up movement) and catching the ball in the cup attached to the stick (catching movement). Participants performed a trial every 20 s for 90 trials. We measured the hemodynamic responses [oxygenated hemoglobin (oxy-Hb) and deoxygenated hemoglobin (deoxy-Hb) signals] around the predicted location of the sensorimotor cortices on both hemispheres. Analysis of the NIRS data revealed that the magnitudes of the event-related oxy-Hb responses to each trial decreased significantly as learning progressed. Analysis of movement data revealed that integrated upper limb muscle torques decreased significantly only for the picking up movements as learning progressed, irrespective of the outcome of the trials. In contrast, dispersion of the movement patterns decreased significantly only for the catching movements in the unsuccessful trials. Furthermore, we found significant positive correlations between the changes in the magnitudes of the oxy-Hb responses and those of the integrated upper limb muscle torques during learning. Our results suggest that the decrease in cortical activation in the sensorimotor cortex reflects changes in motor commands during learning of a multi-joint discrete movement. This article was published in Exp Brain Res and referenced in International Journal of Physical Medicine & Rehabilitation

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords