alexa Decreased intrinsic brain connectivity is associated with reduced clinical pain in fibromyalgia.
Physicaltherapy & Rehabilitation

Physicaltherapy & Rehabilitation

International Journal of Physical Medicine & Rehabilitation

Author(s): Napadow V, Kim J, Clauw DJ, Harris RE

Abstract Share this page

Abstract OBJECTIVE: A major impediment to the development of novel treatment strategies for fibromyalgia (FM) is the lack of an objective marker that reflects spontaneously reported clinical pain in patients with FM. Studies of resting-state intrinsic brain connectivity in FM have demonstrated increased insular connectivity to the default mode network (DMN), a network whose activity is increased during nontask states. Moreover, increased insular connectivity to the DMN was associated with increased spontaneous pain levels. However, as these analyses were cross-sectional in nature, they provided no insight into dynamic changes in connectivity or their relationship to variations in self-reported clinical pain. The purpose of this study was to evaluate longitudinal changes in the intrinsic brain connectivity of FM patients treated with nonpharmacologic interventions known to modulate pain levels in this patient population, and to test the hypothesis that the reduction of DMN-insula connectivity following therapy would correlate with diminished pain. METHODS: Seventeen FM patients underwent resting-state functional magnetic resonance imaging at baseline and following 4 weeks of a nonpharmacologic intervention to diminish pain. Intrinsic DMN connectivity was evaluated using probabilistic independent components analysis. Longitudinal changes in intrinsic DMN connectivity were evaluated by paired analysis, and correlations between longitudinal changes in clinical pain and changes in intrinsic DMN connectivity were investigated by multiple linear regression analysis. Changes in clinical pain were assessed with the short form of the McGill Pain Questionnaire (SF-MPQ). RESULTS: Clinical pain as assessed using the sensory scale of the SF-MPQ was reduced following therapy (P=0.02). Intrinsic DMN connectivity to the insula was reduced, and this reduction correlated with reductions in pain (corrected P<0.05). CONCLUSION: Our findings suggest that intrinsic brain connectivity can be used as a candidate objective marker that reflects changes in spontaneous chronic pain within individual FM patients. We propose that intrinsic connectivity measures could potentially be used in either research or clinical settings as a complementary, more objective outcome measure for use in FM. Copyright © 2012 by the American College of Rheumatology.
This article was published in Arthritis Rheum and referenced in International Journal of Physical Medicine & Rehabilitation

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords