alexa Degradation of mono-chlorophenols by a mixed microbial community via a meta- cleavage pathway.
Environmental Sciences

Environmental Sciences

Journal of Bioremediation & Biodegradation

Author(s): Farrell A, Quilty B

Abstract Share this page

Abstract A mixed microbial community, specially designed to degrade a wide range of substituted aromatic compounds, was examined for its ability to degrade mono-chlorophenols as sole carbon source in aerobic batch cultures. The mixed culture degraded 2-, 3-, and 4-chlorophenol (1.56 mM) via a meta- cleavage pathway. During the degradation of 2- and 3-chlorophenol by the mixed culture, 3-chlorocatechol production was observed. Further metabolism was toxic to cells as it led to inactivation of the catechol 2,3-dioxygenase enzyme upon meta- cleavage of 3-chlorocatechol resulting in incomplete degradation. Inactivation of the meta- cleavage enzyme led to an accumulation of brown coloured polymers, which interfered with the measurement of cell growth using optical density. Degradation of 4-chlorophenol by the mixed culture led to an accumulation of 5-chloro-2-hydroxymuconic semialdehyde, the meta- cleavage product of 4-chlorocatechol. The accumulation of this compound did not interfere with the measurement of cell growth using optical density. 5-chloro-2-hydroxymuconic semialdehyde was further metabolized by the mixed culture with a stoichiometric release of chloride, indicating complete degradation of 4-chlorophenol by the mixed culture via a meta- cleavage pathway.
This article was published in Biodegradation and referenced in Journal of Bioremediation & Biodegradation

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords