alexa Delivery of interferon-beta to the monkey nervous system following intranasal administration.
Pharmaceutical Sciences

Pharmaceutical Sciences

Journal of Bioequivalence & Bioavailability

Author(s): Thorne RG, Hanson LR, Ross TM, Tung D, Frey WH nd

Abstract Share this page

Abstract We determined the nervous system targeting of interferon-beta1b (IFN-beta1b), a 20 kDa protein used to treat the relapsing-remitting form of multiple sclerosis, following intranasal administration in anesthetized, adult cynomolgus monkeys. Five animals received an intranasal bolus of [(125)I]-labeled IFN-beta1b, applied bilaterally to the upper nasal passages. Serial blood samples were collected for 45 min, after which the animals were euthanized by transcardial perfusion-fixation. High resolution phosphor imaging of tissue sections and gamma counting of microdissected tissue were used to obtain the distribution and concentration profiles of [(125)I]-IFN-beta1b in central and peripheral tissues. Intranasal administration resulted in rapid, widespread targeting of nervous tissue. The olfactory bulbs and trigeminal nerve exhibited [(125)I]-IFN-beta1b levels significantly greater than in peripheral organs and at least one order of magnitude higher than any other nervous tissue area sampled. The basal ganglia exhibited highest [(125)I]-IFN-beta1b levels among CNS regions other than the olfactory bulbs. Preferential IFN-beta1b distribution to the primate basal ganglia is a new finding of possible clinical importance. Our study suggests both IFN-beta and IFN-alpha, which share the same receptor, may be bound with relatively high affinity in these structures, possibly offering new insight into a neurovegetative syndrome induced by IFN-alpha therapy and suspected to involve altered dopamine neurotransmission in the basal ganglia. Most importantly, our results suggest intranasally applied macromolecules may bypass the blood-brain barrier and rapidly enter the primate CNS along olfactory- and trigeminal-associated extracellular pathways, as shown previously in the rat. This is the first study to finely detail the central distribution of a labeled protein after intranasal administration in non-human primates. This article was published in Neuroscience and referenced in Journal of Bioequivalence & Bioavailability

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords