alexa Demineralization around orthodontic brackets bonded with resin-modified glass ionomer cement and fluoride-releasing resin composite.
Microbiology

Microbiology

Journal of Antivirals & Antiretrovirals

Author(s): Wilson RM, Donly KJ

Abstract Share this page

Abstract PURPOSE: Enamel demineralization adjacent to orthodontic brackets is one of the risks associated with orthodontic treatment. Glass ionomer cements have been shown to decrease enamel demineralization adjacent to brackets and bands but do not exhibit bond strengths comparable to resin composites. The purpose of this in vitro study was to compare a fluoride-releasing resin composite versus a resin-modified glass ionomer cement for inhibition of enamel demineralization surrounding orthodontic brackets. METHODS: Forty-five teeth were randomly assigned to 3 groups of 15 teeth. Fifteen were bonded with Concise (3M), a non-fluoride-releasing resin composite (control); 15 teeth were bonded with Light Bond (Reliance), a fluoride-releasing resin composite; and 15 teeth were bonded with Fuji Ortho LC (GC Corporation), a resin-modified glass ionomer cement. The teeth were placed in an artificial caries solution to create lesions. Following sectioning of the teeth in a buccolingual direction, polarized light microscopy was utilized to evaluate enamel demineralization adjacent to the orthodontic bracket. The area of the lesion was measured 100 microns from the orthodontic bracket and bonding agent. RESULTS: MANOVA (P < .0001) and Duncan's test (P < .05) indicated the resin-modified glass ionomer cement (Fuji Ortho LC) and the fluoride-releasing resin composite (Light Bond) had significantly less adjacent enamel demineralization than the non-fluoride-releasing resin composite control. However, there was no significant difference between the resin-modified glass ionomer cement and the fluoride-releasing resin composite. CONCLUSIONS: Based on the results of this in vitro study, it can be concluded that Fuji Ortho LC and Light Bond exhibit significant inhibition of adjacent demineralization compared to the non-fluoride-releasing control.
This article was published in Pediatr Dent and referenced in Journal of Antivirals & Antiretrovirals

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords