alexa Dendritic cell dysfunction in cancer: a mechanism for immunosuppression.
Physicaltherapy & Rehabilitation

Physicaltherapy & Rehabilitation

Journal of Sports Medicine & Doping Studies

Author(s): PinzonCharry A, Maxwell T, Lpez JA

Abstract Share this page

Abstract Several reports have demonstrated that tumours are not intrinsically resistant to the immune response. However, neoplasias commonly fail to initiate and maintain adequate immunity. A number of factors have been implicated in causing the failure, including aberrant antigen processing by tumour cells, anergy or deletion of T cells, and recruitment of inhibitory/regulatory cell types. It has been suggested that dysfunction of dendritic cells (DC) induced by the tumour is one of the critical mechanisms to escape immune surveillance. As a minor subset of leucocytes, DC are the key APC for initiating immune responses. DC are poised at the boundaries of the periphery and the inner tissues, sampling antigens of diverse origin. Following their encounter with antigen or danger signals, DC migrate to lymph nodes, where they activate effector cells essential for tumour clearance. Although the DC system is highly heterogeneous, the differentiation and function of DC populations is largely regulated by exogenous factors. Malignancies appear to exploit this by producing a plethora of immunosuppressive factors capable of affecting DC, thus exerting systemic effects on immune function. This review examines recent findings on the effects of tumour-derived factors inducing DC dysfunction and in particular examines the findings on alteration of DC differentiation, maturation and longevity as a potent mechanism for immune suppression in cancer. This article was published in Immunol Cell Biol and referenced in Journal of Sports Medicine & Doping Studies

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version