alexa Dendritic Ih selectively blocks temporal summation of unsynchronized distal inputs in CA1 pyramidal neurons.
Physicaltherapy & Rehabilitation

Physicaltherapy & Rehabilitation

Journal of Yoga & Physical Therapy

Author(s): Migliore M, Messineo L, Ferrante M

Abstract Share this page

Abstract The active dendritic conductances shape the input-output properties of many principal neurons in different brain regions, and the various ways in which they regulate neuronal excitability need to be investigated to better understand their functional consequences. Using a realistic model of a hippocampal CA1 pyramidal neuron, we show a major role for the hyperpolarization-activated current, Ih, in regulating the spike probability of a neuron when independent synaptic inputs are activated with different degrees of synchronization and at different distances from the soma. The results allowed us to make the experimentally testable prediction that the Ih in these neurons is needed to reduce neuronal excitability selectively for distal unsynchronized, but not for synchronized, inputs.
This article was published in J Comput Neurosci and referenced in Journal of Yoga & Physical Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords