alexa Denoising array-based comparative genomic hybridization data using wavelets
Mathematics

Mathematics

Journal of Applied & Computational Mathematics

Author(s): LI HSU

Abstract Share this page

Array-based comparative genomic hybridization (array-CGH) provides a high-throughput, highresolution method to measure relative changes in DNA copy number simultaneously at thousands of genomic loci. Typically, these measurements are reported and displayed linearly on chromosome maps, and gains and losses are detected as deviations from normal diploid cells. We propose that one may consider denoising the data to uncover the true copy number changes before drawing inferences on the patterns of aberrations in the samples. Nonparametric techniques are particularly suitable for data denoising as they do not impose a parametric model in finding structures in the data. In this paper, we employ wavelets to denoise the data as wavelets have sound theoretical properties and a fast computational algorithm, and are particularly well suited for handling the abrupt changes seen in array-CGH data. A simulation study shows that denoising data prior to testing can achieve greater power in detecting the aberrant spot than using the raw data without denoising. Finally, we illustrate the method on two array-CGH data sets.

This article was published in Biostatistics and referenced in Journal of Applied & Computational Mathematics

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords