alexa Department of Molecular Biology


Journal of Antivirals & Antiretrovirals

Author(s): Momany FA

Abstract Share this page

An evaluation of the CHARMm force field for small molecules is described. Using different force field conditions and computational techniques, a wide variety of compounds are analyzed. rms deviations of Cartesian coordinates for 49 diverse organic molecules taken from the Cambridge Crystallographic Data Base and internal coordinate geometries for 28 other molecules are reported. Results are described with different dielectrics, dihedral constraints, and crystal packing to allow analysis of deviations from experimental data and give precise statements of the reliability of the parameters used in the force field. Torsional barriers (rms = 0.4) and conformational energy differences (rms = 0.4) are examined and comparisons made to other force fields such as MM2, Tripos, and DREIDING. The results confirm that CHARMm is an internally consistent all purpose force field with energy terms for bonds, angles, dihedrals, and out-of-plane motions, as well as nonbonded electrostatic and van der Waals interactions. Reported CHARMm results (rms = 0.006 Å for bonds, rms = 1.37° for angles, and rms = 3.2° for dihedrals) are in excellent agreement with high quality electron diffraction data. © 1992 by John Wiley & Sons, Inc.

This article was published in J Comp Chem and referenced in Journal of Antivirals & Antiretrovirals

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version