alexa Derivation and diagnostic accuracy of the surgical lung injury prediction model.
Anesthesiology

Anesthesiology

Journal of Anesthesia & Clinical Research

Author(s): Kor DJ, Warner DO, Alsara A, FernndezPrez ER, Malinchoc M,

Abstract Share this page

Abstract BACKGROUND: Acute lung injury (ALI) is a serious postoperative complication with limited treatment options. A preoperative risk-prediction model would assist clinicians and scientists interested in ALI. The objective of this investigation was to develop a surgical lung injury prediction (SLIP) model to predict risk of postoperative ALI based on readily available preoperative risk factors. METHODS: Secondary analysis of a prospective cohort investigation including adult patients undergoing high-risk surgery. Preoperative risk factors for postoperative ALI were identified and evaluated for inclusion in the SLIP model. Multivariate logistic regression was used to develop the model. Model performance was assessed with the area under the receiver operating characteristic curve and the Hosmer-Lemeshow goodness-of-fit test. RESULTS: Out of 4,366 patients, 113 (2.6\%) developed early postoperative ALI. Predictors of postoperative ALI in multivariate analysis that were maintained in the final SLIP model included high-risk cardiac, vascular, or thoracic surgery, diabetes mellitus, chronic obstructive pulmonary disease, gastroesophageal reflux disease, and alcohol abuse. The SLIP score distinguished patients who developed early postoperative ALI from those who did not with an area under the receiver operating characteristic curve (95\% CI) of 0.82 (0.78-0.86). The model was well calibrated (Hosmer-Lemeshow, P = 0.55). Internal validation using 10-fold cross-validation noted minimal loss of diagnostic accuracy with a mean ± SD area under the receiver operating characteristic curve of 0.79 ± 0.08. CONCLUSIONS: Using readily available preoperative risk factors, we developed the SLIP scoring system to predict risk of early postoperative ALI.
This article was published in Anesthesiology and referenced in Journal of Anesthesia & Clinical Research

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords