alexa Derivation of clinically compliant MSCs from CD105+, CD24- differentiated human ESCs.
Immunology

Immunology

Rheumatology: Current Research

Author(s): Lian Q, Lye E, Suan Yeo K, Khia Way Tan E, SaltoTellez M,

Abstract Share this page

Abstract Adult tissue-derived mesenchymal stem cells (MSCs) have demonstrated therapeutic efficacy in treating diseases or repairing damaged tissues through mechanisms thought to be mediated by either cell replacement or secretion of paracrine factors. Characterized, self-renewing human ESCs could potentially be an invariable source of consistently uniform MSCs for therapeutic applications. Here we describe a clinically relevant and reproducible manner of generating identical batches of hESC-derived MSC (hESC-MSC) cultures that circumvents exposure to virus, mouse cells, or serum. Trypsinization and propagation of HuES9 or H1 hESCs in feeder- and serum-free selection media generated three polyclonal, karyotypically stable, and phenotypically MSC-like cultures that do not express pluripotency-associated markers but displayed MSC-like surface antigens and gene expression profile. They differentiate into adipocytes, osteocytes, and chondrocytes in vitro. Gene expression and fluorescence-activated cell sorter analysis identified CD105 and CD24 as highly expressed antigens on hESC-MSCs and hESCs, respectively. CD105+, CD24- monoclonal isolates have a typical MSC gene expression profiles and were identical to each other with a highly correlated gene expression profile (r(2) > .90). We have developed a protocol to reproducibly generate clinically compliant and identical hESC-MSC cultures. This article was published in Stem Cells and referenced in Rheumatology: Current Research

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords