alexa Detailed computational study of the active site of the hepatitis C viral RNA polymerase to aid novel drug design.
Pharmaceutical Sciences

Pharmaceutical Sciences

Journal of Pharmaceutical Care & Health Systems

Author(s): Barakat KH, Law J, Prunotto A, Magee WC, Evans DH,

Abstract Share this page

Abstract The hepatitis C virus (HCV) RNA polymerase, NS5B, is a leading target for novel and selective HCV drug design. The enzyme has been the subject of intensive drug discovery aimed at developing direct acting antiviral (DAA) agents that inhibit its activity and hence prevent the virus from replicating its genome. In this study, we focus on one class of NS5B inhibitors, namely nucleos(t)ide mimetics. Forty-one distinct nucleotide structures have been modeled within the active site of NS5B for the six major HCV genotypes. Our comprehensive modeling protocol employed 287 different molecular dynamics simulations combined with the molecular mechanics/Poisson-Boltzmann surface area (MM-PBSA) methodology to rank and analyze these structures for all genotypes. The binding interactions of the individual compounds have been investigated and reduced to the atomic level. The present study significantly refines our understanding of the mode of action of NS5B-nucleotide-inhibitors, identifies the key structural elements necessary for their activity, and implements the tools for ranking the potential of additional much needed novel inhibitors of NS5B. This article was published in J Chem Inf Model and referenced in Journal of Pharmaceutical Care & Health Systems

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords