alexa Detection of adulteration of extra-virgin olive oil by chemometric analysis of mid-infrared spectral data


Journal of Food & Industrial Microbiology

Author(s): Gozde Gurdeniz, Banu Ozen

Abstract Share this page

This study focuses on the detection and quantification of extra-virgin olive oil adulteration with different edible oils using mid-infrared (IR) spectroscopy with chemometrics. Mid-IR spectra were manipulated with wavelet compression previous to principal component analysis (PCA). Detection limit of adulteration was determined as 5% for corn–sunflower binary mixture, cottonseed and rapeseed oils. For quantification of adulteration, mid-IR spectral data were manipulated with orthogonal signal correction (OSC) and wavelet compression before partial least square (PLS) analysis. The results revealed that models predict the adulterants, corn–sunflower binary mixture, cottonseed and rapeseed oils, in olive oil with error limits of 1.04, 1.4 and 1.32, respectively. Furthermore, the data were analysed with a general PCA model and PLS discriminant analysis (PLS-DA) to observe the efficiency of the model to detect adulteration regardless of the type of adulterant oil. In this case, detection limit for adulteration is determined as 10%.

This article was published in Food Chemistry and referenced in Journal of Food & Industrial Microbiology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version