alexa Detection of Cd, Pb, and Cu in non-pretreated natural waters and urine with thiol functionalized mesoporous silica and Nafion composite electrodes.
General Science

General Science

Research & Reviews: Journal of Botanical Sciences

Author(s): Yantasee W, Charnhattakorn B, Fryxell GE, Lin Y, Timchalk C, , Yantasee W, Charnhattakorn B, Fryxell GE, Lin Y, Timchalk C, , Yantasee W, Charnhattakorn B, Fryxell GE, Lin Y, Timchalk C, , Yantasee W, Charnhattakorn B, Fryxell GE, Lin Y, Timchalk C,

Abstract Share this page

Abstract Electrochemical sensors have great potential for environmental monitoring of toxic metal ions in waters due to their portability, field-deployability and excellent detection limits. However, electrochemical sensors employing mercury-free approaches typically suffer from binding competition for metal ions and fouling by organic substances and surfactants in natural waters, making sample pretreatments such as wet ashing necessary. In this work, we have developed mercury-free sensors by coating a composite of thiol self-assembled monolayers on mesoporous supports (SH-SAMMS) and Nafion on glassy-carbon electrodes. With the combined benefit of SH-SAMMS as an outstanding metal preconcentrator and Nafion as an antifouling binder, the sensors could detect 0.5 pp b of Pb and 2.5 pp b of Cd in river water, Hanford groundwater, and seawater with a minimal amount of preconcentration time (few minutes) and without any sample pretreatment. The sensor could also detect 2.5 pp b of Cd, Pb, and Cu simultaneously. The electrodes have long service times and excellent single and inter-electrode reproducibility (5\% R.S.D. after 8 consecutive measurements). Unlike SAMMS-carbon paste electrodes, the SAMMS-Nafion electrodes were not fouled in samples containing albumin and successfully detected Cd in human urine. Other potentially confounding factors affecting metal detection at SAMMS-Nafion electrodes were studied, including pH effect, transport resistance of metal ions, and detection interference. With the ability to reliably detect low metal concentration ranges without sample pretreatment and fouling, SAMMS-Nafion composite sensors have the potential to become the next-generation metal analyzers for environmental and bio-monitoring of toxic metals.
This article was published in Anal Chim Acta and referenced in Research & Reviews: Journal of Botanical Sciences

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version