alexa Detection of gastric dysrhythmia using WT and ANN in diabetic gastroparesis patients.



Author(s): Kara S, Dirgenali F, Okkesim S

Abstract Share this page

Abstract Gastric myoelectrical activity can be measured by a noninvasive technique called electrogastrography where surface electrodes are placed on the epigastric area of the abdomen. The electrogastrogram (EGG) signal is by nature a nonstationary signal in terms of its frequency, amplitude and wave shape. Unlike the other methods discrete wavelet analysis (DWT) was designed for nonstationary signals. For automatic assessment of EGG, we used artificial neural networks (ANNs) that have been widely employed in pattern recognition due to their great potential of high performance, flexibility, robust fault tolerance, cost-effective functionality and capability for real-time applications. So we developed a new method for classification of EGG based on DWT and ANN. This article was published in Comput Biol Med and referenced in Dentistry

Relevant Expert PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version