alexa Detection of polycyclic aromatic hydrocarbon degradation genes in different soil bacteria by polymerase chain reaction and DNA hybridization.


Journal of Nursing & Care

Author(s): Hamann C, Hegemann J, Hildebrandt A

Abstract Share this page

Abstract Twenty different strains of Pseudomonas, Mycobacterium, Gordona, Sphingomonas, Rhodococcus and Xanthomonas which degrade polycyclic aromatic hydrocarbons (PAH) were characterized in respect to genes encoding degradation enzymes for PAH. Genomic DNA from these strains was hybridized with a fragment of ndoB, coding for the large iron sulfur protein (ISP alpha) of the naphthalene dioxygenase from Pseudomonas putida PaW736 (NCIB 9816). A group of seven naphthalene-degrading Pseudomonas strains showed strong hybridization with the ndoB probe, and five Gordona, Mycobacterium, Rhodococcus and Pseudomonas strains able to degrade higher molecular weight PAH showed weaker hybridization signals. Using a polymerase chain reaction (PCR) approach, seven naphthalene-degrading Pseudomonas strains showed a PCR fragment of the expected size with ndoB-specific primers and additionally ten strains of Gordona, Mycobacterium, Pseudomonas, Sphingomonas and Xanthomonas able to degrade higher molecular weight PAH were detected with degenerate primer-pools specific for the ISP alpha [2Fe-2S]-Rieske center of diverse aromatic hydrocarbon dioxygenases. This suggests a molecular relationship between genes coding for PAH catabolism in various PAH-degrading bacterial taxa, which could be used to evaluate the PAH-degradation potential of mixed populations.
This article was published in FEMS Microbiol Lett and referenced in Journal of Nursing & Care

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version